

Date of Submission: 30-01-2021

Hepatoprotective and Antibacterial activity of Ethanolic extract of Neonaucleasessilifolia Bark

Mehonaz Sultana¹, Dr. Jamil Ahmad Shilpi^{1*}, Sheuly Akter¹Zia Uddin Masum²

¹Pharmacy Discipline, Life Science School, Khulna University, Khulna-9208, Bangladesh ²Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka-1000,

Bangladesh

ABSTRACT: This paper corresponds to the investigation of the possible hepatoprotective and antibacterial properties of the crude ethanolic extract of Neonaucleasessilifoliabark. CCL4induced hepatoprotective activity study was carried out on Wister albino rats at the dose of 250 & 500 mg/kg of body weight. The levels of SGPT, SGOT, ALP, and TB serum enzymes and GSH. SOD and CAT antioxidant enzymes of hepatotoxic and plant extract treated animals were determined as marker of hepatoprotection. In comparison to the control group the hepatotoxin induced rats showed significant rise in the level of SGPT, SGOT, ALP and TB whereas in the bark extract treated rats these enzyme levels were markedly reduced.In addition, in spite of decreased levels of the antioxidant enzymes in CCL₄ induced animals, an increased enzyme levels were identified in the N. sessilifoliabark extract treated groups indicating the capability of this plant to protect against hepatotoxicity. Antibacterial activity was analyzed following disk diffusion method against four bacterial strains. Zone of inhibition was created upon applying the crude ethanolic extract against both (Staphylococcus gram-positive aureus, subtilis)& gram-negative bacterias Bacillus (Salmonella enteridis, Escherichia coli). The ultimate results found provide the scientific basis for the traditional use of this plant in the treatment of liver diseases and bacterial infection.

KEYWORDS:N. sessilifolia, Wister albino, CCL₄, SGPT, SGOT, ALP, TB, GSH, SOD, CAT, grampositive,

I. INTRODUCTION

Neonaucleasessilifolia is a mountainous plant belonging to the Rubiaceae family grows mostly in the land of dry hill forest in Chittagong, Chittagong hill tracts and Sylhet in Bangladesh. The leaves of this tree are about 12.5-23 cm long, epileptic, opposite, glabrous, coriaceous, nearly sessile, cordate; the solitary white flowers are 3.7 cm in diameter, fragrant, silky, axillary,globose head having stout peduncles; the fruits are distinctively capsule like, 8 mm in length, ovate. The hilly plant was reported to contain different chemical elements Beta Sitosterol, StigmasterolGlucoside, Quinovic and Saponins [1]. Different parts of this medium to large sized evergreen tree isbeing utilized by local tribal peoples as a source of conventional medicines for ages. Bark of this plant retains astringent, tonic, and styptic properties which is used by tribals peoples to heal gingivitis, diarrhea, tuberculosis with hemoptysis, metritis and liver disorders, bowel complaints and fever whereas the fresh leaf paste is known to be used to treat bacterial skin infection. Apart from that, the woods are used by Cambodian people as a tonic and depuration [2-3]. The present study was designed to investigate the hepatoprotective and antibacterial activities of Neonaucleasessilifoliabark.

II. MATERIALS AND METHODS 2.1 Collection and Extraction

Bark of Neonaucleasessilifoliaplant was collected from the Chittagong Hill Tracts range on "October, 2017" with strict prohibition on any kind of adulteration. The plant sample was sent to Bangladesh National Herbarium, Mirpur, Dhakafor identification (Accession No.: DACB45283). The separated collected bark was from unwantedcomponents followed by washing with tap water. After 15 days of shade drying the bark was powderedusing a suitable grinderand extracted according to cold extraction method. About 400 gmof powdered bark was submerged in 2000 mL ethanol in a glass container and kept for 10 days with regular shaking and stirring. The bark extract was then filteredusing a piece of clean, white cotton clothfollowed byevaporation in a rotary evaporator. After a few days of waiting, the concentrated extract (approx. yield value 3.8 %)

Date of Acceptance: 13-02-2021

was transferred into a small beaker and stored in a cool, dark and dry place.

2.2 Animals

Young Wister-albino ratsof either sex weighing between 75-120 grams were used for hepatoprotective experiment. Afterpurchasing, from the animal house of Jahangirnagar University, Savar, Dhaka-1342 the rats were kept in the animal house of the Pharmacy Discipline, Khulna University, Khulna (Animal ethics approval no. -KUAEC-2020/12/24). The rats were exposed to ideal ambient laboratory conditions {relative humidity (55-60) %, room temperature $(25 \pm 2)^{0}$ C} and natural day night cycle for 14 days prior to the experiment. The animals were fed standard laboratory food and tap water.

2.3 Drugs and Reagents

In thehepatoprotective activity study Silymarin(Brand name- Radisyl 140 mg capsule) was used as standard which was collected from local pharmacy.Other reagents namely Carbontetra-chloride (CCl4), chloroform, olive oil, ethanol, distilled water, agar media, powdered ciprofloxacin, nutrient broth, bacterial strains were provided by the pharmaceutical laboratory of pharmacy discipline, Khulna University.

2.4 Phytochemical Screening

Preliminary phytochemical group test was carried out on the crude bark extract prior to pharmacological activity tests to identify the presence of major functional groups. The analysis was performed based on the method described previously [4-6].

2.5 Acute Toxicity Study

Acute toxicity test of the plant extract was carried out according to the method described by previously with minor modifications [7]. Experimental animals were divided into four groups containing three Wister rats in each group namely control group and three treated groups. The control group received 2% Tween 80 in water whereas the treated groups were administered ethanolic bark extract at the dose of 500 mg/kg, 1000 mg/kg and 2000 mg/kg $(0.01 \times \text{ body})$ weight). The animals were observed first for short period (4 h) followed by long period (72 h), for any physiological and behavioral changes.

2.6 Hepatoprotective Activity Study

Hepatoprotectiveactivity test of the plant extract was carried outfollowing the method described previously with minor modifications [8]. Twenty-five young Wister albino ratsweighing between 75-120 gmwere divided into five groups containing five animals in each group namely control group, hepatotoxic group, standard group and two extract treated groups. Control group received distilled water, hepatotoxic group also received distilled water, standard group received the standard drug silymarin and the extract treated groups were administered two doses of plant extract (250 mg/kg and 500 mg/kg) at the dose of (1 mL/kg body weight, p.o.) for 9 days. On the 7th day after 12 hour fasting each of the animals were given CCL₄ except control group. Animals were sacrificed under mild chloroform anesthesia to collect blood samples for assaying marker enzymes such as serum glutamic oxaloacetic transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP) and bilirubin with help of a blood analyzer. Kidney and liver were also dissected out and stored in 10% neutral buffered formalin for histopathological examination [9].

Catalase (CAT), Superoxide Dismutase (SOD) and reduced glutathione (GSH) was determined in the histopathological study. Tissue homogenate was prepared according to the method described previously [10]. The tissue (Liver) was weighed and 10% (w/v) tissue homogenate was prepared from part of the sample in 0.15 M Tris-HCL (pH 7.4) prior to centrifugation at 2500 rpm for 10 minutes. The supernatant obtained thereafter was used to estimate CAT, SOD, and GSH.For measurement of GSH mixture of 0.5 ml of the tissue homogenate and 0.1 ml of 25 % TCA was kept on ice for a few minutes followed by centrifugation at 3000 rpm for few minutes. 0.3 ml of supernatant was separated and mixed with 0.7 ml of 0.2 M sodium phosphate buffer (pH 8) and freshly prepared 2 ml of 0.6 mM DTNB (pH 8) resulting in a yellow colored solution.After 10 minutes the color was estimated at 412 nm against a blank containing 0.1 ml of 5 % TCA and a standard containing 100 n-moles/ml glutathione [11]. For determining SOD 300 µl of the tissue homogenate was mixed with 1.8 ml of 50 mM carbonated buffer (pH 10.2) followed by addition of 0.1 ml of 3×10-4 M epinephrine and 1 ml of EDTA solution (pH 10.2). Temperature was maintained at 30°C and the increased absorbance was estimated at 480 nmagainst blank [12]. CAT was reckoned by composing 0.3 ml of the tissue

homogenate with 5.7 ml of phosphate buffer and 3 ml of 5 mM H_2O_2 in buffer. After one minute the absorbance of the solution was measured at 240 nm against blank [13].

2.7 Antibacterial Activity Study

Disk diffusion method was used to analyze antibacterial activity of the N. sessilifolia bark extract in two different doses; 25 mg/ml and 50 mg/ml [14]. The first culture was prepared by pouring sterilized agar media into Petridishes to make agar slants onto which two gram-positive and gram-negative attenuated bacterial strains were transferred under aseptic condition using a laminar air flow hood followed by incubation at 37°c for 16-18 hours to assure the growth of test organisms. The second culture was prepared in the same way except instead of attenuated bacterial strains, the test organisms from the first culture was transferred onto the agar slant using an inoculating loop. Third culture media was prepared by transferring test organisms from second culture to the vials containing 3 ml sterilized nutrient broth media which was readied by adding water to powdered nutrient agar. When turbidity is visualized in the vials after incubating at 37°C for 2-3 hours 10 µL solution from each vial was transferred to the test tubes containing 10 ml autoclaved agar media using micropipette. The test tubes were shaken and rotated to get a uniform suspension which were poured onto sterile petridishes aseptically to get the bacterial strain ready for the experiment. These were marked, divided and labeled into four portions. 25 mg and 50 mg of plant extract were weighed and mixed with 50% ethanol with the help of a sonicator. 10 μ l ethanol was used as a negative control solution and positive control solution was made by adding 3 mg of ciprofloxacin powder in 1ml ethanol [15]. The plant extract solution of both doses, negative and positive control solutions were applied onto sterile filter paper discs which were then placed into the respective labeled portions of the seeded test plates and finally incubated upside down at 37°C for 16-18 hours. After completion of incubation the diameters of the zone of inhibitions were measured in terms of millimeter with a calibrated scale.

III. STATISTICAL ANALYSIS

For determination of the significant differences between the control group and treament group Student's t-test was used.

IV. RESULTS

4.1 Phytochemical Screening

Preliminary phytochemical screening of the crude bark extract showed the presence of Tannins, Flavonoids, Saponins, Alkaloids, Glycosides, Proteins and Terpenoids.

4.2 Acute Toxicity Study

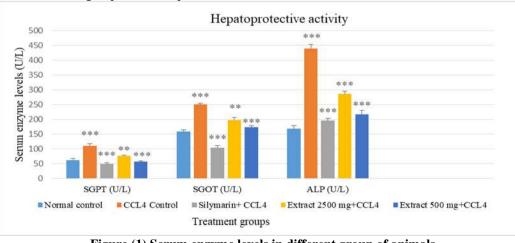
No mortality was observed among the animals after consumption of the plant extract. Apart from that, any drug related changes in behavior, breathing, skin effects, water consumption, impairment in food intake and temperature were absent in the experimental rats.

OBSERVATION	CONTROL	500 mg/kg	1000 mg/kg	2000 mg/kg
No. of dead rats	0	0	0	0
Food intake	Normal	Normal	Normal	Normal
Skincolor	Normal	Normal	Normal	Normal
Drowsiness	Not present	Not present	Not present	Not present
Sedation	Not present	Not present	Not present	Not present
Eye color	Normal	Normal	Normal	Normal
Diarrhoea	Not present	Not present	Not present	Not present
Coma	Not present	Not present	Not present	Not present

Table (1) The acute toxicity study of the ethanolic extract of N.sessilifoliain rats

4.3 Hepatoprotective Activity Study

Compared to the normal control group the CCL₄ treated group showed a significant increase in the mobility of serum enzymes SGOT, SGPT, SALP and TB and a decrease in CAT, SOD and

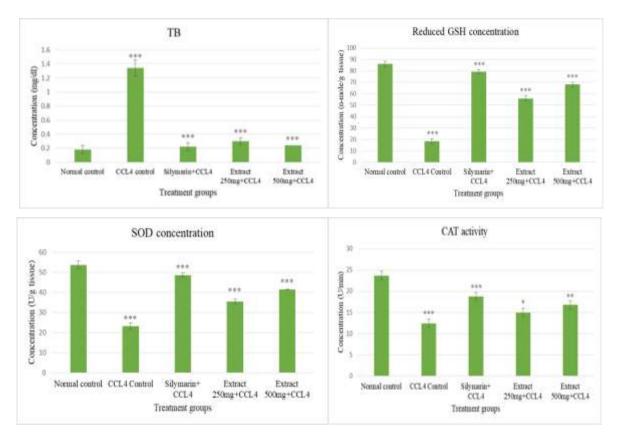

GSH enzymes. On the contrary, in the plant extract treated groups a significant reduction in SGOT, SGPT, SALP and TB serum enzymes and a rise in the levels of CAT, SOD and GSH were noticed.

TEST GROUP	SGPT (U/L)	SGOT (U/L)	ALP (U/L)	TB (mg/dl)
Normal	72	159	142	0.1
Control	62.2	152	168	0.4
Control	48.4	167	184	0.1
	52.7	172	195	0.2
	78.2	148	158	0.1
Statistical	62.7±5.619	159.6±4.48	169.4±9.36	0.18±0.058
CCL ₄	94.5	254	452	1.0
control	106.2	242	434	1.6
	121	238	395	1.3
	135	258	472	1.6
	98.4	263	448	1.2
Statistical	111.02±7.517***	251±4.75***	440.2±12.83***	1.34±0.117***
Standard	40.7	98	188	0.2
$+ CCL_4$	52.5	116	193	0.4
	68.3	85.2	220	0.1
	56.3	122	205	0.3
	49.1	102	172	0.1
Statistical	49.1±4.533***	104.64±6.555***	195.6±8.08***	0.22±0.058***
Extract	68.4	195.1	256	0.4
250mg +	74.6	186.5	279	0.1
CCL ₄	80.9	205	310	0.1
	83.2	228	283	0.4
	78.9	178	302	0.5
Statistical	77.2±2.615**	198.52±8.626**	286±9.46***	0.30±0.084***
Extract	58	187	197	0.4
500mg +	54.2	162	220	0.3
CCL_4	47.2	182	252	0.2
	62.1	158	184	0.2
	65.8	176	236	0.1
Statistical	57.46±3.219***	173±5.62***	217.8±12.41***	0.24±0.051***

Table (2) Effect of Silymarin and N.sessilifoliaextract on serum SGPT, SGOT, ALP and TB levels in CCl₄ induced hepatotoxicity.

Values are expressed as Mean \pm SEM; ***P< 0.0001, **P< 0.001, *P< 0.05; and n=5. CCl₄ treated control group was compared with normal control group, whereas all other groups were compared with ${\rm CCl}_4$ treated control group.

		unierent gi	oups of e.	xperimental animals		
	GSH SOD			CAT		
GROUPS	ABSOR BANCE	REDUCED GSH CONCENTRA TION (nmol/g TISSUE)	% INHIB ITION	CONCENTRATIIO N OF SOD (U/g TTISSUE)	ABSORBA NCE CHANGE, ΔA	CAT ACTIVITY (U/min)
Normal control	0.122	89.9	82.33	54.89	0.206	20.6
	0.119	86.9	87.66	58.44	0.238	23.8
	0.112	79.9	75.66	50.44	0.227	22.7
	0.115	82.9	84.33	56.22	0.247	24.7
	0.124	91.9	72.33	48.22	0.266	26.6
Stastical Analysis	86.3 ± 2.20)5	53.64±1.8825		23.68±1.001	
, 010	0.045	12.9	36.67	24.44	0.142	14.2
CCl4	0.058	25.9	42.33	28.22	0.112	11.2
control	0.049	16.9	27.67	18.44	0.138	13.8
	0.046	13.9	34.33	22.89	0.108	10.8
	0.054	21.9	32.33	21.55	0.119	11.9
Stastical Analysis	18.3 ± 2.4	18.3 ± 2.462 *** 23.108±1.615***		12.38±1.537***		
•	0.114	81.9	72.33	48.22	0.173	17.3
Silymarin 100	0.108	75.9	76.67	51.11	0.202	20.2
mg/kg+	0.106	73.9	67.66	45.10	0.181	18.1
CCl4	0.112	79.9	71.33	47.55	0.194	19.4
	0.117	84.9	75.67	50.45	0.186	18.6
Stastical Analysis	79.	79.3±1.99*** 48.48±1.076***		18.72±0.503***		
	0.092	59.9	55.67	37.11	0.148	14.8
Extract 250	0.086	53.9	53.33	35.55	0.156	15.6
mg/kg + CCl4	0.084	51.9	47.67	31.78	0.161	16.1
	0.094	61.9	57.66	38.44	0.143	14.3
	0.083	50.9	51.33	34.22	0.139	13.9
Stastical Analysis	55.7 ± 2.2*	***	35.42±1.155***		14.94±0.406*	
Extract 500 mg/kg + CCl4	0.097	64.9	65.67	43.78	0.182	18.2
	0.103	70.9	62.33	41.55	0.153	15.3
	0.106	73.9	57.66	38.44	0.168	16.8
	0.094	61.9	63.33	42.22	0.164	16.4
	0.101	68.9	61.33	40.88	0.172	17.2
Stastical Analysis	68.1 ± 2.131***		41. 374±	0.8772***	16.78	8±0.476**


Table (3) Reduced glutathione (GSH), Superoxide Dismutase (SOD) and Catalase (CAT) concentration in different groups of experimental animals

Values are expressed as Mean± SEM; ***P< 0.0001, **P< 0.001, *P< 0.05; and n=5. CCl₄ treated control group was compared with normal control group, whereas all other groups were compared with CCl4 treated control group.

Volume 6, Issue 1 Jan-Feb 2021, pp: 550-557 www.ijprajournal.com

ISSN: 2249-7781

Figure (2) Reduced glutathione (GSH), Superoxide Dismutase (SOD) and Catalase (CAT) concentration in different group of animals

4.4 Antibacterial Activity Study

In comparison with the standard antibiotic discs of ciprofloxacin the crude ethanolicextract of the Neonaucleasessilifolia showed zone of

inhibition against two Gram-positive (Staphylococcus aureus, Bacillus subtilis) and two Gram-negative (Salmonella enteridis, Escherichia coli) bacterial strains.

BACTERIAL STRAINS	TYPE OF BACTERIAL STRAINS	DIAMETER OF ZONE OF INHIBITION IN mm			
		STANDARD (CIPROFLO XACIN)	EXTRACT 25 µg/DISC	EXTRACT 50 µg/DISC	NEGATIVE CONTROL
Salmonella enteridis	Gram (-)	35	24	25	0
Staphylococcus	Gram (+)	30	22	24	0
Escherichia coli	Gram (-)	43	21	26	0
Bacillus subtilis	Gram (+)	29	17	19	0

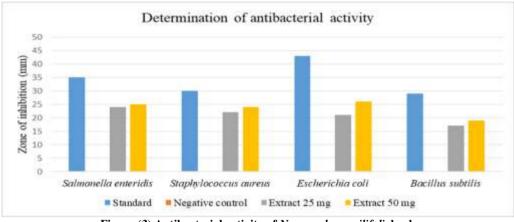


Figure (3) Antibacterial activity of Neonaucleasessilifoliabark

V. DISCUSSION

Ethanolic bark of extract Neonaucleasessilifoliawas screened for hepatoprotective and antibacterial properties through CCL₄ induced and disk diffusion method respectively. On phytochemical screening the crude bark extract showed the existence of several secondary metabolites such as Tannins, Flavonoids, Saponins, Alkaloids, Glycosides, Proteins and Terpenoids, responsible for a number of therapeutic and biological activities. In acute toxicity test no mortality or physiological and behavioral changes was visible proving the safety of the plant for pharmacological study.

Carbon tetrachloride (CCL₄), a renowned hepatotoxic agent induces fatty liver and cell necrosis promptingtriacylglyceral accumulation, attenuation of GSH, enhanced lipid peroxidation, membrane disruption, depression of protein synthesis and reduced of enzymatic activity [16-17]. Various hepatic marker enzymes (SGPT, SGOT and ALP) the levels of total bilirubin indicated hepatocytic damage. These enzymes leak into the bloodstream from liver tissue and produce significantly elevated serum levels and total bilirubin [18].In the hepatoprotective study the experimental animals in the hepatotoxic group exhibited expansion in the an serum enzymesSGOT, SGPT, SALP and TBwhereas the ethanolic bark extract treated group showed the opposite. In addition, CCL₄ induced Wister- albino rats revealed a reduction in the antioxidant enzymes, CAT, SOD and GSH. On the contrary, administration of the bark extract represented enhanced levels of those antioxidant enzymes indicating the potential ofNeonaucleasessilifoliabark to prevent hepatic disorders. In the antibacterial study, upon

application of the plant extract on four bacterial culture media, zone of inhibition was observed against four bacterial strains alluding to the antibacterial properties of the plant. Thesepharmacological activities may be exhibited due to the presence of flavonoid, tannins, terpenoids, saponins, steroids and alkaloids [19-21].

VI. CONCLUSION

N. sessilifolia is a hilly plant having a number of conventional medicinal uses. The present study showed that the plant bark contains hepatoprotective and antibacterial activities which is possibly due to the presence of several fundamental phytoconstituents. However, further extensive study is required to isolate and identify these compounds to determine the exact mechanism of action relating to these properties.

REFERENCES

- www. herbpathy.com. Uses-and-Benefits-of-Neonauclea-Sessilifolia. Accessed on May 26, 2020
- [2]. www. mpbd. info. Neonaucleasessilifolia. Bangladesh. Accessed on May 26, 2020.
- [3]. Rahman, MA. "Indigenous knowledge of herbal medicines in Bangladesh", Bangladesh J. Bot.- 2010; 39(2): 169-177.
- [4]. Sofowra, A. "Medicinal Plants And traditional Medicine In Africa", Spectrum Books Ltd., Ibadan, Nigeria-1993; 191-289.
- [5]. Trease,GE., Evans, WC. Pharmacognosy, 11th edn.,BailliereTindall, London-1989; 45-50.
- [6]. Harborne, JB. "Phytochemicals Methods", Chapman and Hall Ltd., London-1973; 49-188.

- [7]. Burger, C, Fischer, DR, Cordenunzzi, DA, Batschauer, Filho A."Acute and subacute toxicity of the hydroalcoholic extract from Wedeliapaludosa (Acmelabrasiliensis) (Asteraceae) in mice", J Pharm Sci-2005; 8(2):370-373.
- [8]. Roy, CK, Kamath, JV, Asad, M. "Hepatoprotective activity of Psidiumguajava Linn. leaf extract"-2006.
- [9]. Nirmala, M, Girija, K, Lakshman, K, Divya, T. "Hepatoprotective activity of Musa paradisiaca on experimental animal models", Asian pacific journal of tropical biomedicine-2012; 2(1):11-15.
- [10]. Sharma, P, Parmar, J, Verma, P, Sharma, P, Goyal, P. "Chemopreventive effect of Phyllanthusniruri on DMBA induced skin papillomagenesis in Swiss albino mice", International journal of biological and medical research-2010; 1(4):158-164.
- [11]. Moron, MS, Depierre, JW, Mannervik, B. "Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver", BiochimicaetBiophysicaActa (BBA)-General Subjects-1979; 582(1):67-78.
- [12]. Misra, HP, Fridovich, I."The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase", Journal of biological chemistry-1972; 247(10):3170-3175.
- [13]. Maehly, AC, Chance, B. The Assay of Catalases and Peroxidases", Methods of biochemical analysis-1954; 1:357-424.
- [14] Marcus, AC, Edori, OS and Maduagu, MC."Phytochemical and Anti-microbial Screening of Phyllantusfratenus and Taraxacuimofficinale Leaves", Biochemistry & Analytical Biochemistry-2019.
- [15]. Bauer, AW, Kirby, WMM, Sherris JC, Turck, M. "Antibiotic susceptibility testing by a standardized single disc method", Am J ClinPathol-1966; 45: 493-496.
- [16]. Pencil, SD, Brattin,Jr,WJ, Glende, Jr, EA, Recknagel, RO."Carbon tetrachloridedependent inhibition of lipid secretion by isolated hepatocytes characterization and requirement for bioactivation", Biochemical pharmacology-1984; 33(15):2419-2423.
- [17]. Recknagel, RO, Glende, Jr, EA, Dolak, JA, Waller, RL. "Mechanisms of carbon tetrachloride toxicity", Pharmacology & therapeutics-1989; 43(1):139-154.

- [18]. Kasdallah-Grissa, A, Mornagui, B, Aouani, E, Hammami, M, El, May, M, Gharbi, N, Kamoun, A, ElFazaâ, S. "Resveratrol, a red wine polyphenol, attenuates ethanol-induced oxidative stress in rat liver", Life sciences-2007; 80(11):1033-1039. Akiyama, H, Fujii, K, Yamasaki, O, Oono, T, Iwatsuki, K. "Antibacterial action of
- several tannins against Staphylococcus aureus", Journal of Antimicrobial Chemotherapy-2001; 48 (4): 487–491.
 [19]. Patel, SS, Savjani, JK. "Systematic review of plant steroids as potential antiinflammatory for the several severa
- plant steroids as potential antiinflammatory agents: Current status and future perspectives",The journal of phytopharmacology-2015; 4(2):121-125. [20]. Chandrashekhar, V, Muchandi, AA, Sudi,
- [20]. Chandrashekhar, V, Muchandi, AA, Sudi, SV, Ganapty, S. "Hepatoprotective activity of Stereospermumsuaveolens against CCl₄induced liver damage in albino rats", Pharmaceutical biology-2010; 48(5):524-528.